The approach and landing trajectory capture phase begins at the TAEM interface and continues to guidance lock-on to the steep outer glide slope. The approach and landing phase begins at about 10,000 feet altitude at an equivalent airspeed of 290, plus or minus 12, knots 6.9 nautical miles (7.9 statute miles) from touchdown. Autoland guidance is initiated at this point to guide the orbiter to the minus 19- to 17-degree glide slope (which is over seven times that of a commercial airliner's approach) aimed at a target 0.86 nautical mile (1 statute mile) in front of the runway. The spacecraft's speed brake is positioned to hold the proper velocity. The descent rate in the later portion of TAEM and approach and landing is greater than 10,000 feet per minute (a rate of descent approximately 20 times higher than a commercial airliner's standard 3-degree instrument approach angle).
At 1,750 feet above ground level, a preflare maneuver is started to position the spacecraft for a 1.5-degree glide slope in preparation for landing with the speed brake positioned as required. The flight crew deploys the landing gear at this point.
The final phase reduces the sink rate of the spacecraft to less than 9 feet per second. Touchdown occurs approximately 2,500 feet past the runway threshold at a speed of 184 to 196 knots (213 to 226 mph).
Unless they've changed things....they used to use a Gulfstream II (not a Grumman) to practice landings.
What would happen if they had to do a go around?, since there speed would drop very fast.
What would happen if they had to do a go around?, since there speed would drop very fast.
They have 10,000 ft. of runway and don't exactly have to worry about 'traffic'.
Users browsing this forum: No registered users and 490 guests